Unveiling the Potentials of the plant Panicum maximum in vertical subsurface flow constructed wetland in a humid urban sub-Saharan environment

CELESTIN DEFO, HERMINE NGUENG* Higher Institute of Agriculture, Forestry, Water and Environment, University of Ebolowa, PO Box 118 Ebolowa, Cameroon

Global South Academic Conclave on WASH and Climate 2025

21st - 23rd February 2025, Ahmedabad

CEPT

ion viega foundation

PLAN OF THE PRESENTATION

INTRODUCTION

- MATERIALS AND METHODS
- RESULTS AND DISCUSSION
- CONCLUSION AND RECOMMENDATIONS

INTRODUCTION

- □Some authors have investigated urban wastewater, artificial wetlands, industrial effluents and agricultural waste (Fonkou et al., 2010; Soh et al., 2014),
- □Wastewater pollution by heavy metals still remains a problem to be solved despite these traditional methods,
- Constructed wetlands vegetated with local macrophytes, are today becoming an interesting alternative for the treatment of wastewater at low cost (Malaval et al., 2016),
- □Therefore, this work contributed to the application of phytotechnologies for the purification of wastewater by local macrophytes in Ebolowa South Cameroon.

MATERIALS AND METHODS

Study area

- Cameroon is located in Sub-Saharan Africa between West and Central Africa at the extreme North Eastern end of the Gulf of Guinea. It lies between latitudes 2° and 13° North of the equator and between longitude 8° and 16° east of the Greenwich Meridian
- It has a total surface area of 475,650 km² with a mainland surface area of 466,050 km² and a maritime surface area of 9,600 km²; respectively (NIS 2001)
- The estimated population is 27 million (WHO & UNICEF 2021)
- The rate of access to drinking water is 66% while that of sanitation is 45% (WHO & UNICEF 2021).

MATERIALS AND METHODS

Experimental set up and operation conditions

- Testing of subvertical flow constructed wetlands microcosm reactors (6 and 2 control), Treating artificial wastewater polluted with Ni in green house;
- 03 reactors vegetated with *Panicum Maximum* 03 planted with *Paspalum polystachyum* and 02 unplanted reactors (controls)
- Wasterwater inlet: From Ni powder (NiSO₄,6H₂O), solutions of concentration 0.5 and 1 ppm were prepared in the lab;
- Irrigation of reactors with artificial Ni polluted water: Groundwater was used in 15 L to prepare the amount of each irrigation. Interval: 20 days.
- Wastewater sampling: triplicate samples for each reactor before any irrigation within 3 months in plastic bottles (250 mL) previously sterilized with chloridric acid.
- Lab analysis: Ni concentrations using Atomic Absorption Spectrophotometer (AAS) after calibration of the device with standard solutions.

Inlet and outlet concentrations of wasters in reactors

- Inlet concentrations: [0,502±0,023; 1,191±0,003] mg/L
- The output concentrations in the unplanted system : 0.046 mg/l compare to planted bed with *Panicum Maximum* : 0.044 mg/l and,
- 0.043 mg/l for the system planted with *Paspalum polystachyum* as:
- All outlet concentrations were <0.2mg/l (WHO admissible level). These observations differ from Defo et al. (2017) testing Ni removal in VSSF CW planted with Typha, Arundo and Vetiver.

Ni 1,194mg/l							
Periods	Inlet	Outlet concentration (mg/l)					
	Concentration (mg/l)	Pm	рр	С			
April	1,191±0,003	0,027±0,010	0,041±0,006	0,047±0,001			
	Ni 0,538 mg/l						
Мау	0,526±0,045	0,026±0,007	0,041±0,001	0,045±0,002			
	Ni 0,538mg/l						
June	0,502±0,023	0,027±0,003	0,037±0,005	0,0,049±0,0001			

Pm : Panicum maximum : Paspalum polystachyum and C : Control

Concentrations of Ni absorbed in plants

- Phytoextraction of Ni happened and Ni Was stored in the roots of plants
- No storage in the steams
- Defo et al. (2017) different findings for *Typha, Arundo* and *Vetiver*, where Ni was stored in roots and steams of plants in VSSF CW

	PLANT ANALYSIS					
Period		Ni Concentrations (mg/kg)				
	Pm		pp			
	Roots	Steam	Root	Steam		
April	0,666	0	0,497	0		
Мау	0,277	0	0,219	0		
June	0,308	0	0,205	0		

Pm : *Panicum maximum, pp* : *Paspalum polystachyum*

Performances of macrophytes studied compared to controls

PURIFICATION PERCENTAGE

- Superior efficacy of planted beds compared to control beds, attributing this enhancement to the presence of vegetation.
- The unplanted system had a purification performance of 94.0%, while the system planted with *Panicum Maximum* was 92.5% and 93.3% for the system planted with *Paspalum polystachyum*.
- The statistical analysis revealed that there was no significant difference between the purification performances of the two tested plants (pvalue < 0.05).
- These plants showed better performance compared to those tested by Paritosh et al. (2019), Defo and Kaur (2018).

Plant growth evolution in the tested reactors

EVOLUTION OF PLANTS HEIGHTS AS FUNCTION OF TIME

Pm : *Panicum maximum, pp* : *Paspalum polystachyum*

CONCLUSION

□ The vertical flow system produced in the reactors is a system with good purifying performance, as well as the selected macrophytes.

□ The Planted reactors showed better performences compared to control (unplanted).

- □ The system planted in *M. Panicum* eliminates more than that planted in *P. Paspalum* and that of the control. The purifying performances are 96.6% for the system planted with *P. Panicum*, 94.4% for *P. Paspalum* and that of the control is 93.3%.
- □ Finally there was no significant difference between the purifying performances of the different systems.

Thank You

Global South Academic Conclave on WASH and Climate 2025

Gates Foundation

viega foundation